
J. AppZ. Maths Mechs, Vol. 55, No. 2, pp. 248-254, 1991 0021-8928/91 $15.00.0+00 
Printed in Great Britain 01992 Pergamon Press Ltd 

THE PROBLEM OF THE JUSTIFICATION OF VARIATIONAL FORMULATIONS OF THE 

BOUNDARY ELEMENT METHOD* 

V.YA. TERESHCHENKO 

An investigation is made of the convergence of boundary element 
approximations of variational solutions of the boundary-value problems 
of linear elasticity theory, using double- and simple-layer potentials 
(DLP, SLP) /l, 2/. Auxiliary propositions are proved, concerninq the 
basis property of the approximating sequence of potentials. The results 
may also be used to justify variational formulations of the boundary 
element method (BEM) is applied to the solution of other second-order 
elliptic boundary-value problems. 

In /l, 2/ we proposed formulations of the BEM in which solutions of variational problems 
for the boundary functionals (BFs) and generalized Trefftz functionals (GTFs) of the 
boundary-value problems of linear elasticity theory are approximated usinq DLPs and SLPs: the 
densities of the latter are interpolated from the nodal values of the displacements (direct 
formulation), or from the nodal stresses (dual formulation). The nodal values of the 
coefficients of the Ritz approximations to the solutions of the variational problems are also 
determined from a system of discrete boundary equations. The interpolation polynomial. whose 
coefficients are determined in terms of the nodal displacements, is complete /3/; in physical 
terms, completeness means that the field of constant strains can be approximated, i.e., as 
the partition into boundary elements (BEs) becomes progressively finer, the strained state 
inside each element will approach a state of constant strain; all this in combination 
guarantees convergence of the approximate solution. 

Thus, the Ritz approximations for each partition into BEs are essentially the same as a 
sequence of DLPs (or SLPs), in which the (unknown) vector density is a complete polynomial. 
To prove the convergence of the Ritz BE-approximations to the solution of the boundary-value 
problem, it is then sufficient to prove that the sequence of DLPs (or SLPs) is complete in 
the energy norm of the problem or in the equivalent Sobolev norm /l/ - subject to conditions 
that guarantee convergence of the BE-approximations as the elements decrease in size, namely, 
completeness of the BE basis functions and the compatibility of the elements /3/. In this 
connection, it should be emphasized that the variational formulations of the BEM proposed in 
/l, 2/ are (nr-ii)-dimensional versions of the finite element method (FEM) in the Ritz 
formulation, and so it is legitimate to apply well-known criteria for completeness of the 
finite element basis functions and the compatibility of the elements, which imply convergence 
of the FEM in its Ritz variational formulation (see, e.g., /4-b/): completeness of the system 
of basis functions in the FEM is achieved by taking a complete interpolation polynomial; the 
compatibility of the elements means that the interpolating function and its derivatives of 
order up to and including q-1 must be continuous across the common boundaries of adjacent 
elements, where 4 is the highest order of the derivatives involved in the functional of the 
variational formulation. 

Some propositions aimed at justifying the variational formulations of the BEM were 
stated in /l, 2/; these propositions will be proved here. 

1. To simplify the discussion (retaining our previous notation in /l, 2/), we shall 
consider DLPs and SLPs with scalar density: 

(henceforth the constants cl, c2 will be omitted). Here 

S4 = UAs, (1.2) n 
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is the discrete boundary, bounding a domain Gn.'CG, where G is an m-dimensional bounded 
domain with sufficiently smooth boundary S; As, are the boundary elements. St is assumed 

that G4-+G as diam As, + 0 (or Si\ = S); r(s, y), s, yE c:a = G4 -I- Sb, is Green's function 
of a second-order elliptic differential operator with constant coefficients: 

AI’(s,‘y) ~0, z,!/EGA(z#Y); rhY)/~s, =O (1.9) 

and a,, = ala,, is differentiation in the direction of the outward conormal (normal)) to 
the surface SA; H (2, Y), Z, Y ‘2 GA is the "Neumann function" of the operator: 

AH' (2. Y) = 0, 2, y E GA (5 f y); AAH (2, &ES‘, = 0 (1.4) 

- the existence of these functions is postulated. Formulae (1.3) and (1.4) have been 
rigorously proved for a piecewise smooth boundary S,i4l; 

‘Pm (y (3) = +@nk$k (tlh 9 = ‘SW n.=1,...,N (1.5) 

are interpolating functions defined in terms of the nodal values cD,,(k is the number of a 
node) of the potentials fin and basis functions qr corresponding to an interpolating 
polynomial of order p /3/, where y(n) defines the relationship between the local coordinate 

(rl) and the global coordinate (y) of the points of the BE AS,,; 

tn (Y (“I)) = F Tnr’h’ @lb 11 E Asnt n = 1,. . ., N (1.6) 

are interpolating functions defined in terms of the nodal values T,k of the normal derivative 
of the potentials y,, and basis functions 9~'; in particular, one can take $Jlr' = &,,$k, 

where v,,(n) is the outward cononnal (normal) at points QEA.9". Throughout this paper, 
unless otherwise stated, summation over k runs from k=l to k=K, and summation over 
n, from n=l to n = N. 

The potentials (1.1) will be used for BE-approximation of solutions in the direct and 
dual formulations of the variational Problems for the BFs and GTFs. 

A sufficient condition for the existence of the integrals in (1.1) is that the densities 
be continuous at the points of As,, (assuming that the BEs themselves are sufficiently 
smooth) f71; this imposes certain conditions on the smoothness of the interpolating poly- 
nomials (in the sense of their order). 

A sufficient condition for the interpolating functions 

given by (1.5) and (1.6), to be continuous on the boundary SA, -v'N is that the BEs As, 
be compatibile (see above); this in turn is ensured while the system of equations of the 
BEM is being set up, by taking the nodal values Qtnk (in the direct formulation) and Tnk 
(in the dual formulation) to be equal at common nodes of adjacent elements II, 2/. Thus, by 
construction, the approximations 

$%tsA=+(Y) (1.7) 

are continuous and their first derivatives have a finite number of points and curves of dis- 
continuity, so that they belong to the space W,' (SA), which in this case is a subset of the 
space of continuous functions C(S,) - the set of all functions whose first derivatives with 
respect to ye SI are elements of the space &VA) of square-integrable functions over 
SA (see (1.2)) (this definition is topologically equivalent to the usual definition of the 
Sobolev class W*l(S) see /a/). 

In problems of linear elasticity theory (the isotropic case) the function F (2, Y) 
corresponds to Green's tensor of the first problem of statics, the function H(z,y) corresponds 
to Green's tensor of the second problem of statics; the density of the potential defined by 
the first (second) formula in (1.1) is interpolated from the nodal displacements (stresses); 
the corresponding vector potentials then describe the field of displacements of the points 
r 6!B @A of the elastic medium /l, 21. 

We will now establish the basis property of the sequences of potentials 
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@,a (d},=l, . . . . N, bn iz)}n=l. . ..p Ns z E SA (1.9) 
For zE As,, the potentials (1.1) will be treated as linear integral operators with 

domain of definition C (As,,) : 

Bn (4 = R (cp,&), yn (4 = R’ (hJ(4, 2 E As, 

and range in L, (AsJ. 
Let us recall some properties of boundary potentials that will be needed in what follows 

/9, lo/. 
An SLP has a singularity o(r-l), r = 1 z-y /, z, y E 8, and accordingly a DLP has a 

singularity 0 (f2); consequently, an SLP is an integral with a weak singularity if S 1s a 
two-dimensional boundary and a singular integral if S is a one-dimensional boundary. Whatever 
the dimensionality of S, a DLP is a singular integral. The integral operators R’ and !? 
generated by a SLP and a DLP have corresponding properties. 

It is known /lo/ that an integral operator with weak singularity is completely continuous 
and therefore bounded in L,. A singular integral operator is bounded in L,, subject to 
certain conditions on the characteristic of the operator as a singular integral /lo/. Thus, 
the integral operators R and R', applied to the respective densities, are bounded in L, (As,): 

If (Pi -O(@,, = 0) and t,, = 0 (T,, = 0), we have 8, = 0 and I',, = 0, n = I,&. . ., 
respectively; consequently, 

R (0) = 0, R' (0) = 0 (1.12) 

The sequence (1.9) will be complete in L,(SJ) if the ranges of the operators 

are dense in L, @A). 

To prove this, we need certain regularity properties of boundary potentials in terms of 
the space of Ii&der continuous functions C**a, O<a,<l, in a bounded domain fll/: let 
L) CE, be a bounded domain whose boundary %J is a finite union of Lyapunov surfaces 191; 
then any SLP with density in C W) is a function in CO*a(E3),0< a< 1; a DLP with density 
in C(X)) is a function in co*= (W), 0 < CY < 1. 

On this basis we can prove the following 

Lemma 2. The ranges of the operators BR,', 2% are dense in L, (3~). 
n n 

Proof. For sufficiently smooth BE As,cSa, linear combinations of potentials 

with densities (l-8), (l.?), respectively, in C(.S,) generate operators which, because of 
the properties of the potentials indicated in the previous paragraph, map CW,) into C"'a (S,), 
O<a<G the functions thus obtained are uniformly continuous in the finite domain 8, and 
therefore form a dense subset of 4 (8.4) (see, e.g., /12/J. 

The basis property of the sequence of potentials (1.9) may be derived from the following 
propositions. 

Lemma 2. Let the densities of the potentials (1.1) be sequences of linearly independent 
functions. Then (1.9) are also sequences of linearly independent functions. 

Proof. Suppose the contrary: there exist constants a% @a*, . . .P %w> not all zero, such 
that (see (1.5)) 

Since R (a)= o (see (l.ll)), this implies that the double sum in parentheses in the last 
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equality vanishes, contrary to the assumption that the densities of the potentials ~Bnl are 
linearly independent; the linear dependence of the sequence {Y,,} is proved in analogous 
fashion. 

For the sequel, we first present a more precise definition of the completeness in L,(S) 
of a sequence {cp,} of interpolating functions of type (1.5) (or (1.6)). The definition of 
completeness for a system of coordinate functions in a Hilbert space H that is usually used 
in connection with the Ritz procedure of approximation /13/ runs as follows: for any function 
TEH and any number a > 0, there exist a natural number M and constants aI, a2. . ., aM 
such that 

(1.12) 

We now need a more discriminating definition, since we are now dealing with approximation by 
piecewise-constant interpolation functions (similar to splines), in which case we have a more 
precise estimate, commonly used in the FEM /14-16/: 

II cp -z $ %k*k llL,~8A3 = 0 @“) > %dPfl 
d =max,diamAs,, d = min,diamAs,; &c,>O 

(1.13) 

provided that the finite elements As, and function cp are sufficiently smooth. 
Thus, for a given boundary (1.2) the number M in (1.12) depends on the number N of EEs 

AS,, and the number E cannot be less than cOdP+l, where p is the order of the polynomial. 

Lennna 3. The sequences of linearly independent potentials (1.9) are complete in L,(Sa). 

Proof. As far as the sequence (fin) is concerned, the assertion is trivial, since 
finIsA = %. vn (see (1.7)) and the interpolating functions (1.5) are complete in the sense of 

(1.13). In view of (1.8) and the completeness of the interpolating functions (1.6) in that 
sense, the same conclusion is true for (d,*7,,}, It remains, therefore, to show that the 

sequence {m) is complete in &(S&). 
For a set of uniformly continuous functions which is dense in L,(S,) (see Lemma 1) this 

completeness is equivalent to R'-completeness of the sequence (frill in the sense of (1.13) 
(for the definition of A-completeness, see /13, p.453/), since we can choose a number N' and 
COnStantS T,k’. Tab’, ., Tb’k so that 

where c' is the constant in (1.10); then for any SLP y'= S't from the above dense subset of 
L, (sA) and the SLP 

it follows from (1.10) that 

(1.14) 

Mow let y be an arbitrary SLP in L,(SA); there exists a SLP y' in a dense subset of 
L, (s,) such that 

II Y - v’ Is, (SA) <g 

Choose the number N' and constants TAk to satisfy (1.14). Then by the triangle inequality 

II Y - Vnrf_uL, (SA) d II Y - v’ II:, (8*) + II Y’ - VN’ IIL, (8&j < 8’ (1.15) 
thus proving the completeness to the sequence (yn), n = i,. ..,N’, In L*(SJ. 
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2. In order to use the Ritz process to construct solutions of variational problems for 
BFs which are equivalent to second-order elliptic boundary-value problems, we have to con- 
struct basis systems of functions in the appropriate boundary "energy" spaces /17/. 

The minimization of BFs of the form 

f(u) =~u~~uds-z~ugds (2.1) 
8 s 

with respect to all solutions of a differential equation Au = 0 in C (on the assumption 

that ju& = 0 if the quadratic form 3A (u,L~) is only non-neqative) is equivalent to a 

non-homoqeneous Neumann problem (g is a given function), and the energy space of admissible 
functions is the trace subspace on S,W,*% (S)c W,X (S), with scalar product 

(2.2) 

(see /17/l. We then have continuous and dense embeddings /17/ 

IV,*% (s) c L, (S) c w,-‘h (8 (2.3) 

and in this situation Riesz's theorem on the general. form of a continuous linear functional 
in a Hilbert space /17/ holds: 

lu, vll/,.s = (u, N&s = (Nu, Nv)+,, s, Vu, u E W,*:i (S) (2.4) 

where N is the isometry of ulz*x (S) onto IV,-% (s) generated by the normal derivative 
operator on S, 

(u, B,u) = (u, N&s (2.5) 

Here <,> is the duality relation on IV,% (S) x WI-% (S), W2% (S) is the Sobolev-Slobodetskii 
space and IV*-% (S) is its dual: (,)*,s, (,~x,s are the scalar products in L,(S), W;y* (S), 
respectively. 

Lemma 4. The sequences of potentials (1.9) are complete in Wn*%(Sa). 

Proof. By construction, W,*% (S,) is the subspace of traces of functions which satisfy 
the equation Au=0 in G, (and perhaps also the condition judC,=O)- Consequently, the 

traces Bn lsh, Yn Is, of the potentials L(z), Y,,(z), z E G,, which satisfy the above conditions, 

belong to W,'x(SA). BY (2.5), the elements a,B, and 8vnYn may be identified with N~I,, 

and Nynr respectively /17f. For any elements N@'. NY' in L*(S,), which is dense in 
w*-"1 (S,) (see (2.311, we have the following inequality (similar to 11.14)): 

Ii NY" - NYN- &,. S& CIIY" -Y,,,l~:,@*,<E”/:! @f3 

Hence, for any elements N8,NYez W;"(S,) we obtain, as 

WINY- NY,* II_-'lP,s, < 6' 

Consequently, the sequence (my,,}, it= 1, . . ..N”. is complete in 
is trUe for (Nfi,,),n = l,.. .,N". Finally, the equality 

II 9 li+,s = II Nu II-‘/., s = I u Is, 8 

which follows from (2.4), implies that 

in (1.15), 

,qg(S,); a similar assertion 

proving the lemma. 
If U, v E w**x (S), Green's formula and (2.2) imply the equality 

1% v1g.s = BA (u, vf = tu, YIHA (2.8) 

and the energy scalar product is equivalent to the scalar product in W,*(G). It then follows 
from (2.7) and (2.8) that the sequences of potentials (1.1) are complete with respect to the 
energy of the Neumann problem (and also in the norm of W,' (GA)). 

From the sum total of what we have proved it follows that BE-approximations to the 
solution of the Neumann problem can be constructed in terms of the potentials &XL {Yn), 
treating the problem as that of minimizing the energy integral 

(2.9) 
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Based on Lemma 4 one can prove that the "Ritz" BE-approximations to a function mi~~miZing 
the BF (2.1) are convergent; the same applies to the minimization proMem for 12.9). By 
construction (see /l, 2/), as already pointed out, the Ritz BE-approximations to the solution 
of a variational problem for BFs (2.1) are identically equal to the sequence of DLPs defined 
by the first formula of (1.1) with an unknown density of type (1.5) (direct formulation): 

or to the sequence of SLPs defined by the second formula of (1.1) with an unkown density of 
type (1.6) (dual formulation): 

u‘v=X:Yn(5), s=G, (2.11) 
7) 

In the first case the unknowns are the values of tl at the nodes of the discrete boundary; 
in the second, they are the values of the normal derivative &u at the nodes of Sb. The 
nodal values are determined from the appropriate systems of Ritz BE-equations for BFs of 
type (2.1) 0, 2/. 

Thus, the potential sequences (1.9) (for .zEG~) are minimizing sequences for BFs 
(2.1), i.e., 

fyi:n_fA(uN)=f(uo)= min f (4 
u‘av;‘h (S) 

Here f~ is a functional approximating f over the approximations (2.10) (or (2.11)) and 

f 6%) = - j %+4s = - I kJ Ii, s 

where t(@ is the exact solution of the problen m&f(u) (see 1171). 
We know (see f13, p.89f and also 1171) that 

f*W=l~0-- uJVI~,s4-I~01~$4 

Hence, by L2.12), we obtain convergence (as S,%-+S) 

12.l2) 

(2.13) 

We can now prove the following theorem. 

Theorem. BE-solution of the problem 

is equivalent to the solution of the Neumann problem 

AZ&, (x) = 0, .z E G, &u, Is = g 

in the sense of convergence as diam As,+O=+Sh+S (or, if sd. z% S) 

The first convergence relation follows from (2.8). the equivalence of the energy norm 
and the norm in w*r (G) II and the convergence (2.13). The second follows from 12.4af, (2.13) 
and the boundary condition of the Neumann problem. 

Using scalar potentials, one can extend the above results on the convergence of the 
BE-approximations to the case of vector potentials in the appropriate vector-function spaces. 

Thus, we have also established the validity of the BE-approximations to the variational 
solutions obtained in /l, 2/ for problems in linear elasticity theory. 

The convergence of BE-approximations to solutions of minimization problems for GTFs /l, 
2/ can also be proved by using the basis property of a sequence of boundary potentials, as 
established above, combined with known convergence properties of the Ritz process as applied 
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to the minimization of GTFs 113, 18, 19f. 
In conclusion, we note that the variational formulations of the BEM presented in 11, 2/ 

recall the approach used in /20/ in connection with various applied mechanical problems, 
which places the BEM in a complex function-theoretic setting and employs Cauchy integrals to 
link the boundary values of the approximating function with its values in the interior of 
the domain. 
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